4.2 Article

Mechanical Properties of Polycarbonate and Poly(Methyl Methacrylate) Films Reinforced with Surface-Functionalized Nanodiamonds

期刊

JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
卷 11, 期 1, 页码 533-536

出版社

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/jnn.2011.3290

关键词

Nanodiamond; Polymer; Functionalization; Nanocomposite; Modulus

向作者/读者索取更多资源

Polymer nanocomposites (PNCs) possess highly versatile characteristics, depending on the nanofiller properties such as its chemical composition, particle size, dimension, polydispersity, concentration, or surface functional groups. In comparison with micron-sized materials, the nanofiller having a large surface area facilitates stronger interaction with the matrix. In this work, various surface-functionalized nanodiamonds (sf-NDs) having hydroxyl, carboxyl, amino, and amide group were prepared, and dispersed into polycarbonate (PC) and poly(methyl methacrylate) (PMMA) polymers. The polymer nanocomposites (PNCs) which contain the ND content of 5 wt% were subjected to the measurements of mechanical properties such as hardness and Young's modulus by atomic force microscopy (AFM) nanoindentation. It was observed that the hardness and Young's modulus of the polymer nanocomposites depend on strongly the nature of functional groups. The amine or amide functionalization gives the high mechanical properties for both polymers. The interfacial interaction between sf-NDs and polymer matrices is an important factor determining the mechanical properties of the PNCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据