4.2 Article

TiO2 Nanoparticles Co-Doped with Silver and Nitrogen for Antibacterial Application

期刊

JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
卷 10, 期 8, 页码 4868-4874

出版社

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/jnn.2010.2225

关键词

TiO2; Nanoparticle; Co-Doped; Antibacterial Property

资金

  1. Hunan Provincial Natural Science Foundation of China [06jj4011]

向作者/读者索取更多资源

We have prepared a series of TiO2 nanoparticles for antibacterial applications. These TiO2 nanoparticles were prepared by the hydrolysis precipitation method with Ti(OBu)(4), silver nitrate and ammonia. Crystal structure, particle size, interfacial structure and UV-visible light response of the prepared nanoparticles were characterized by X-ray diffraction measurements (XRD), Transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR) and UV-Vis diffuse reflectance spectroscopy (UV-Vis-DRs). The XRD spectra showed that all samples were anatase structure calcined at 450 degrees C for 3 hours. The Ag doping made the peak of diffraction wider. The results of TEM showed that the nanoparticles of TiO2, N TiO2 and 1% Ag N TiO2 were all spherical in shape and well distributed with a mean size of 19.8 nm, 39.2 nm and 20.7 nm, respectively. N doping caused the nanoparticle size to increase, while, when the doped amount of Ag+ increased, the TiO2 particle size decreased. The FTIR revealed that Ag and N doping of TiO2 appeared to have strong absorption by OH group and showed the characteristic absorption band of NH4+ and Ag. The UV-Vis-DRs indicated that the absorption band of Ag-N co-doped TiO2 had red shift and that the optical absorption response (between 400 nm and 700 nm) had obvious enhancement. The antibacterial properties of nanoparticles were investigated by agar diffusion method toward Escherichia coli and Bacillus subtilis. The results indicated that both Ag- and N-doped TiO2 could increase the antibacterial properties of TiO2 nanoparticles under fluorescent light irradiation. A 1% Ag-N-TiO2 had the highest antibacterial activity with a clear antibacterial circle of 33.0 mm toward Escherichia coli and 22.8 mm toward Bacillus subtilis after cultivation for 24 hours.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据