4.4 Article

Gas sensor based on photoconductive electrospun titania nanofibres operating at room temperature

期刊

JOURNAL OF NANOPARTICLE RESEARCH
卷 15, 期 4, 页码 -

出版社

SPRINGER
DOI: 10.1007/s11051-013-1566-9

关键词

Gas sensor; Electrospinning; TiO2; Photoconductivity; Nanofibres; Ammonia

向作者/读者索取更多资源

An important drawback of semiconductor gas sensors is their operating temperature that needs the use of heaters. To overcome this problem a prototyping sensor using titania nanofibres (with an average diameter of 50 nm) as sensitive membrane were fabricated by electrospinning directly on the transducer of the sensor. Exploiting the effect of titania photoconductivity, resistance variations upon gas interaction under continuous irradiation of ultra violet light were measured at room temperature. The resistive sensor response was evaluated towards ammonia, nitrogen dioxide and humidity. The sensor exhibited a higher response to ammonia than to nitrogen dioxide, especially for concentrations larger than 100 ppb. For 200 ppb of ammonia and nitrogen dioxide, the responses were similar to 2.8 and 1.5 %, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据