4.4 Article

Preparation of hydrosol suspensions of elemental and core-shell nanoparticles by co-deposition with water vapour from the gas-phase in ultra-high vacuum conditions

期刊

JOURNAL OF NANOPARTICLE RESEARCH
卷 14, 期 9, 页码 -

出版社

SPRINGER
DOI: 10.1007/s11051-012-1136-6

关键词

Magnetic nanoparticle hyperthermia; Gas phase synthesis; Core-shell nanoparticles

资金

  1. MRC [G0800692] Funding Source: UKRI
  2. Medical Research Council [G0800692] Funding Source: researchfish

向作者/读者索取更多资源

We report a new method to produce liquid suspensions of nanoparticles by co-deposition with water vapour from the gas-phase in ultra-high vacuum (UHV) conditions. The water is injected from outside the vacuum as a molecular beam onto a substrate maintained at 77 K and forms an ice layer with a UHV vapour pressure. Molecular dynamics simulations confirm that the nanoparticles are soft-landed close to the surface of the growing ice layer. We show that the un-agglomerated size distribution within the liquid is similar to the gas-phase size distribution and demonstrate that the inclusion of surfactants in the injected water prevents agglomeration. The method allows the flexibility and tight size control available with gas-phase production methods to be applied to making nanoparticle suspensions with any desired properties. This is important for practical applications, especially in medicine. We have extended the method to include core-shell nanoparticles, in which there is flexible control over the core size and shell thickness and free choice of the material in either. Here, we report the production of suspensions of Cu, Ag and Au elemental nanoparticles and Fe@Au and Fe@Fe-oxide core-shell nanoparticles with diameters in the range 5-15 nm. We demonstrate the power of the method in practical applications in the case of Fe@Fe-oxide nanoparticles, which have a specific absorption rate of an applied oscillating magnetic field that is significantly higher than available Fe-oxide nanoparticle suspensions and the highest yet reported. These will thus have a very high-performance in the treatment of tumours by magnetic nanoparticle hyperthermia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据