4.4 Article

Direct production of carbon nanotubes decorated with Cu2O by thermal chemical vapor deposition on Ni catalyst electroplated on a copper substrate

期刊

JOURNAL OF NANOPARTICLE RESEARCH
卷 13, 期 10, 页码 4681-4689

出版社

SPRINGER
DOI: 10.1007/s11051-011-0432-x

关键词

Nanotube; Decorated nanotube; Copper oxide nanoparticle; Nickle catalyst; Electroplating

向作者/读者索取更多资源

Carbon nanotubes (CNTs) decorated with Cu2O particles were grown on a Ni catalyst layer deposited on a Cu substrate by thermal chemical vapor deposition from liquid petroleum gas. Ni catalyst nanoparticles with different sizes were produced in an electroplating system at 45 A degrees C using the corrosive effect of H2SO4 which was added to solution. These nanoparticles provide the nucleation sites for CNT growth avoiding the need for a buffer layer. The surface morphology of the Ni catalyst films and CNT growth over this catalyst was studied by scanning electron microscopy (SEM). High temperature surface segregation of the Cu substrate into the Ni catalyst layer and its exposition to O-2 at atmospheric environment, during the CNTs growth, lead to the production of CNTs decorated with about 6 nm Cu2O nanoparticles. We used SEM to study the surface characteristics of Ni catalyst films and characteristic of grown CNTs. Raman spectroscopy, transmission electron microscopy (TEM), electron diffraction (EDX), X-ray diffraction, and X-ray photoelectron spectroscopy (XPS) revealed the formation of CNTs. The selected area electron diffraction pattern, EDX, and XPS studies show that these CNTs were decorated with Cu2O nanoparticles. This way of fabrication is the easiest and lowest cost method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据