4.4 Article

Biotemplate fabrication of SnO2 nanotubular materials by a sonochemical method for gas sensors

期刊

JOURNAL OF NANOPARTICLE RESEARCH
卷 12, 期 4, 页码 1389-1400

出版社

SPRINGER
DOI: 10.1007/s11051-009-9684-0

关键词

SnO2; Nanotubular; Sonochemical method; Gas sensor; Nanomanufacturing

资金

  1. National Science Foundation of China [50772067]
  2. Shanghai Science and Technology Committee [07DJ14001]
  3. MOST of China [2009DFA52410]

向作者/读者索取更多资源

A sonochemical method is developed to fabricate SnO2 nanotubular materials from biological substances (here, it is cotton). The cotton fibers in SnCl2 solution were first treated with ultrasonic waves in air, followed by calcinations to give nanotubular materials that faithfully retain the initial cotton morphology. The microstructure and morphology of the obtained SnO2 nanotubules were characterized by the combination of field-emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and N-2 adsorption/desorption measurements. The thermal behavior and crystalline properties were examined in the temperature range of 450-700 A degrees C. The nanocrystals composing of SnO2 nanotubules were estimated about 8.5, 13.2, and 14.2 nm corresponding to calcination temperatures of 450, 550, and 700 A degrees C, respectively. The sensor performance of biomorphic SnO2 nanotubules calcined at 700 A degrees C was investigated in the atmosphere of ethanol, formaldehyde, carbinol, carbon monoxide, hydrogen, ammonia, and acetone, respectively, which exhibited a good selectivity for acetone at a working temperature of 350 A degrees C. The sensitivity to 20 ppm acetone, S, was 6.4 at 350 A degrees C with rapid response and recovery (around 10-9 s). These behaviors were well explained in relation to the morphology of the nanotubules thus produced.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据