4.4 Article

Investigation of airborne nanopowder agglomerate stability in an orifice under various differential pressure conditions

期刊

JOURNAL OF NANOPARTICLE RESEARCH
卷 11, 期 7, 页码 1625-1635

出版社

SPRINGER
DOI: 10.1007/s11051-009-9731-x

关键词

Agglomerates; Aggregates; Shear forces; Dispersion; Binding energy; Orifice flow; Environment; EHS

资金

  1. German Ministry for Education and Research (BMBF)

向作者/读者索取更多资源

The stability of agglomerates is not only an important material parameter of powders but also of interest for estimating the particle size upon accidental release into the atmosphere. This is especially important when the size of primary particles is well below the agglomerate size, which is usually the case when the size of primary particles is below 100 nm. During production or airborne transportation in pipes, high particle concentrations lead to particle coagulation and the formation of agglomerates in a size range of up to some micrometers. Binding between the primary particles in the agglomerates is usually due to van der Waals forces. In the case of a leak in a pressurized vessel (e.g. reactor, transport pipe, etc.), these agglomerates can be emitted and shear forces within the leak can cause agglomerates to breakup. In order to simulate such shear forces and study their effect on agglomerate stability within the airborne state, a method was developed where agglomerate powders can be aerosolized and passed through an orifice under various differential pressure conditions. First results show that a higher differential pressure across the orifice causes a stronger fragmentation of the agglomerates, which furthermore seems to be material dependent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据