4.2 Article

The Research of Nanoparticle and Microparticle Hydroxyapatite Amendment in Multiple Heavy Metals Contaminated Soil Remediation

期刊

JOURNAL OF NANOMATERIALS
卷 2014, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2014/168418

关键词

-

资金

  1. National Spark Program of China [2012GA780051]

向作者/读者索取更多资源

It was believed that when hydroxyapatite (HAP) was used to remediate heavy metal-contaminated soils, its effectiveness seemed likely to be affected by its particle size. In this study, a pot trial was conducted to evaluate the efficiency of two particle sizes of HAP: nanometer particle size of HAP (nHAP) and micrometer particle size ofHAP (mHAP) inducedmetal immobilization in soils. Both mHAP and nHAP were assessed for their ability to reduce lead (Pb), zinc (Zn), copper (Cu), and chromium (Cr) bioavailability in an artificially metal-contaminated soil. The pakchoi (Brassica chinensis L.) uptake and soil sequential extraction method were used to determine the immobilization and bioavailability of Pb, Zn, Cu, and Cr. The results indicated that both mHAP and nHAP had significant effect on reducing the uptake of Pb, Zn, Cu, and Cr by pakchoi. Furthermore, both mHAP and nHAP were efficient in covering Pb, Zn, Cu, and Cr from nonresidual into residual forms. However, mHAP was superior to nHAP in immobilization of Pb, Zn, Cu, and Cr in metal-contaminated soil and reducing the Pb, Zn, Cu, and Cr utilized by pakchoi. The results suggested that mHAP had the better effect on remediation multiple metal-contaminated soils than nHAP and was more suitable for applying in in situ remediation technology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据