4.6 Article Proceedings Paper

Degree of conversion and microhardness of dental composite resin materials

期刊

JOURNAL OF MOLECULAR STRUCTURE
卷 1044, 期 -, 页码 299-302

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.molstruc.2012.10.062

关键词

Composite resins; Fourier transform infrared spectroscopy; Degree of conversion

向作者/读者索取更多资源

Dental composite resins (CRs) are commonly used materials for the replacement of hard dental tissues. Degree of conversion (DC) of CR measures the amount of the un-polymerized monomers in CR, which can cause adverse biological reactions and weakening of the mechanical properties. In the past, studies have determined the positive correlation of DC values determined by Fourier transform infrared spectroscopy (FT-IR) and microhardness (MH) values. The aim of this study was to establish whether MH can replace FTIR for the determination of DC of contemporary CR. Two nano-hybrid CR: Tetric EvoCeram (TEC; Ivoclar Vivadent, Liechtenstein) and IFS Empress Direct (ED; Ivoclar Vivadent) and one submicron-hybrid CR - Charisma Opal (CO; Heraeus Kulzer, Germany) were tested. DC was determined by using FT-IR (n = 10) and Vickers MH (n = 10) was measured using Leitz Miniload 2 Microhardness Tester (Leitz, Germany). The data were analyzed using ANOVA and Tukey's post hoc test (p < 0.05). CO was the highest polymerized material (62.20%) in comparison to TEC (58.85%) and ED (58.78%). Opposite, ED was significantly hardest material (24.49) when compared to CO (17.81) and TEC (20.05). Since the CO was the material with the highest DC, but also with the lowest MH, it can be concluded that the DC of new CR formulations cannot be estimated through the MH data. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据