4.4 Article

Optimization of SMN Trans-Splicing Through the Analysis of SMN Introns

期刊

JOURNAL OF MOLECULAR NEUROSCIENCE
卷 46, 期 3, 页码 459-469

出版社

HUMANA PRESS INC
DOI: 10.1007/s12031-011-9614-3

关键词

Spinal muscular atrophy; SMN; RNA therapy; Trans-splicing

资金

  1. SMA Europe

向作者/读者索取更多资源

Spinal muscular atrophy (SMA), a neurodegenerative disease, is the leading genetic cause of infantile death and is caused by the loss of survival motor neuron 1 (SMN1). Humans carry a duplicated copy gene, SMN2, which produces very low levels of functional protein due to an alternative splicing event. This splicing difference is the reason that SMN2 cannot prevent SMA development when SMN1 is deleted. SMN2 generates a transcript lacking exon 7 and consequently gives rise to an unstable truncated SMN protein that cannot protect from SMA. To increase full-length SMN protein, we utilize a strategy referred to as trans-splicing. This strategy relies upon pre-mRNA splicing occurring between two separate molecules: (1) the endogenous target RNA and (2) the therapeutic RNA that provides the correct RNA sequence via a trans-splicing event. The initial trans-splicing RNA targeted intron 6 and replaced exon 7 with the SMN1 exon 7 in SMN2 pre-mRNA. To determine the most efficient intron for SMN trans-splicing event, a panel of trans-splicing RNA molecules was constructed. Each trans-splicing RNA molecule targets a specific intron within the SMN2 pre-mRNA and based on the target intron, replaces the downstream exons including exon 7. These constructs were examined by RT-PCR, immunofluorescence, and Western blotting. We have identified intron 3 as the most efficient intron to support trans-splicing in cellular assays. The intron 3 trans-splicing construct targets intron 3 and replaces exons 4-7 and was distinguished based on its ability to produce the highest level of the trans-spliced RNA and full-length SMN protein in SMA patient fibroblasts. The efficiency of the intron 3 construct was further improved by addition of an antisense that blocks the 3' splice site at the intron 4/exon 5 junction. Most importantly, intracerebroventricular injection of the Int3 construct into SMN Delta 7 mice elevated the SMN protein levels in the central nervous system. This research demonstrates an alternative platform to correct genetic defects, including SMN expression and examines the molecular basis for trans-splicing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据