4.4 Article

Identification and functional characterization of TRPA1 in human myoblasts

期刊

出版社

SPRINGER
DOI: 10.1007/s00424-015-1729-x

关键词

Myoblasts; Skeletal muscle regeneration; Transient receptor potential channel; Nitric oxide; Thymol; Differentiation

资金

  1. German network for mitochondrial disorders (mito-NET) - German ministry of education and research (BMBF, Bonn, Germany) [01GM1113A]
  2. [Sonderforschungsbereich 642]

向作者/读者索取更多资源

The proper function of the skeletal muscle is essential for the survival of most animals. Thus, efficient and rapid repair of muscular damage following injury is crucial. In recent years, satellite cells have emerged as key players of muscle repair, capable of undergoing extensive proliferation after injury, fusing into myotubes and restoring muscle function. Furthermore, it has been shown that Ca2+/calmodulin-dependent generation of nitric oxide (NO) is an important regulator of muscle repair. Here, we demonstrate the functional expression of transient receptor potential, subfamily A1 (TRPA1) channel in human primary myoblasts. Stimulation of these cells with well-known TRPA1 ligands led to robust intracellular Ca2+ rises which could be inhibited by specific TRPA1 antagonists. Moreover, we show that TRPA1 activation enhances important aspects of skeletal muscle repair such as cell migration and myoblast fusion in vitro. Interestingly, TRPA1 levels and inducible Ca2+ transients decline with ongoing myoblast differentiation. We suggest that TRPA1 might serve as a physiological mediator for inflammatory signals and appears to have a functional role in promoting myoblast migration, fusion, and potentially also in activating satellite cells in humans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据