4.0 Article

The Smallest Active Carbamoyl Phosphate Synthetase Was Identified in the Human Gut Archaeon Methanobrevibacter smithii

期刊

出版社

KARGER
DOI: 10.1159/000342520

关键词

Carbamoyl phosphate synthetase; Ancestral form; Methanobrevibacter smithii; Intestinal archaea; Evolution; Obesity

资金

  1. ANCS-UEFISCDI Romania [PNII ID_1034, 1023/2009]
  2. NIH R01 grant [GM/CA60371]
  3. Wayne State University Provost's Research Stimulation Award

向作者/读者索取更多资源

The genome of the major intestinal archaeon Methanobrevibacter smithii contains a complex gene system coding for carbamoyl phosphate synthetase (CPSase) composed of both full-length and reduced-size synthetase subunits. These ammonia-metabolizing enzymes could play a key role in controlling ammonia assimilation in M. smithii, affecting the metabolism of gut bacterial microbiota, with an impact on host obesity. In this study, we isolated and characterized the small (41 kDa) CPSase homolog from M. smithii. The gene was cloned and overexpressed in Escherichia coli, and the recombinant enzyme was purified in one step. Chemical crosslinking and size exclusion chromatography indicated a homodimeric/tetrameric structure, in accordance with a dimer-based CPSase activity and reaction mechanism. This small enzyme, MS-s, synthesized carbamoyl phosphate from ATP, bicarbonate, and ammonia and catalyzed the same ATP-dependent partial reactions observed for full-length CPSases. Steady-state kinetics revealed a high apparent affinity for ATP and ammonia. Sequence comparisons, molecular modeling, and kinetic studies suggest that this enzyme corresponds to one of the two synthetase domains of the full-length CPSase that catalyze the ATP-dependent phosphorylations involved in the three-step synthesis of carbamoyl phosphate. This protein represents the smallest naturally occurring active CPSase characterized thus far. The small M. smithii CPSase appears to be specialized for carbamoyl phosphate metabolism in methanogens. Copyright (c) 2012 S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据