4.7 Article

Viscosity of Ar-Cu nanofluids by molecular dynamics simulations: Effects of nanoparticle content, temperature and potential interaction

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 268, 期 -, 页码 490-496

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.molliq.2018.07.090

关键词

Nanofluid; Molecular dynamics simulations; Viscosity; Lennard-Jones potential; Embedded atomic method

向作者/读者索取更多资源

In this study, Molecular Dynamics Simulations is used to calculate the viscosity of Ar-Cu nanofluid within the Green-Kubo framework considering the influence of nanoparticle volume fraction and the nanofluid temperature. First, the simulation method is developed and favourably compared to previous works. Then, simulation results show that the viscosity of Ar-Cu nanofluid is significantly larger compared to that of the Argon base fluid. We also demonstrated that the viscosity of the nanofluid systematically increases with the increase in the particle volume fraction and decreases with increasing temperature. Our results were compared to existing analytical model and previous works involving one common element either Argon or Copper evidencing the role of adjacent liquid layer to a nanoparticle at the solid-liquid interface. Finally, the influence of the solid-solid inter-atomic potential type on the viscosity of nanofluid (Ar-Cu) was finally investigated to evidence the density effect of the ordered liquid layer at liquid-nanoparticle interface. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据