4.7 Article

Selective transport through a model calcium channel studied by Local Equilibrium Monte Carlo simulations coupled to the Nernst-Planck equation

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 189, 期 -, 页码 100-112

出版社

ELSEVIER
DOI: 10.1016/j.molliq.2013.03.015

关键词

Transport; Monte Carlo; Nernst-Planck; Ion channel

资金

  1. Hungarian State
  2. European Union [TAMOP-4.2.2.A-11/1/KONV-2012-0071, TAMOP-4.2.2/B-10/1-2010-0025]
  3. Hungarian National Research Fund [OTKA K75132]

向作者/读者索取更多资源

We have recently introduced the Local Equilibrium Monte Carlo (LEMC) technique (Boda, Gillespie, J. Chem. Theor. Comput. 8 (2012) 824-829) in which a non-equilibrium system is divided into small volume elements and separate Grand Canonical Monte Carlo simulations are performed for each using a local intensive parameter, which, as soon as local equilibrium is assumed, can be identified with the local electrochemical potential. The simulation provides the concentration profiles of the steady-state diffuse system, where ions are transported through a membrane from one bulk compartment to the other. The dynamics of the ions is described with the Nernst-Planck (NP) transport equation. The NP equation is coupled to the LEMC simulations via an iteration procedure that ensures that conservation of mass (the continuity equation) is satisfied. We apply the method to a simple calcium channel model and demonstrate its efficiency. The computer experiments are inspired by real electrophysiological experiments for the Ryanodine Receptor calcium channel. The diffusion coefficients in the channel are fitted to results of Dynamic Monte Carlo simulations. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据