4.5 Article

A second Ig-like domain identified in dystroglycan by molecular modelling and dynamics

期刊

JOURNAL OF MOLECULAR GRAPHICS & MODELLING
卷 29, 期 8, 页码 1015-1024

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jmgm.2011.04.008

关键词

Dystroglycan; Ig-like fold; Protein modelling; Molecular dynamics; Dystroglycanopathies

资金

  1. Association Francaise contre les Myopathies (AFM)

向作者/读者索取更多资源

Dystroglycan (DG) is a cell surface receptor which is composed of two subunits that interact noncovalently, namely alpha- and beta-DG. In skeletal muscle, DG is the central component of the dystrophin-glycoprotein complex (DGC) that anchors the actin cytoskeleton to the extracellular matrix. To date only the three-dimensional structure of the N-terminal region of alpha-DG has been solved by X-ray crystallography. To expand such a structural analysis, a theoretical molecular model of the murine alpha-DG C-terminal region was built based on folding recognition/threading techniques. Although there is no a significant (<30%) sequence homology with the N-terminal region of alpha-DG, protein fold recognition methods found a significant resemblance to the alpha-DG N-terminal crystallographic structure. Our in silico structural prediction identified two subdomains in this region. Amino acid residues similar to 500-600 of alpha-DG were predicted to adopt an immunoglobulin-like (Ig-like) beta-sandwich fold. Such modeled domain includes the beta-DG binding epitope of alpha-DG and, confirming our previous experimental results, suggests that the linear epitope (residues 550-565) assumes a beta-strand conformation. The remaining segment of the alpha-DG C-terminal region (residues 601-653) is organized in a coil-helix-coil motif. A 20-ns molecular dynamics simulation in explicit water solvent provided support to the predicted Ig-like model structure. The identification of a second Ig-like domain in DG represents another important step towards a full structural and functional description of the alpha/beta DG interface. Preliminary characterization of a novel recombinant peptide (505-600) encompassing this second lg-like domain demonstrates that it is soluble and stable, further corroborating our in silico analysis. (C) 2011 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据