4.3 Article

Evolution of Plant Mitochondrial Intron-Encoded Maturases: Frequent Lineage-Specific Loss and Recurrent Intracellular Transfer to the Nucleus

期刊

JOURNAL OF MOLECULAR EVOLUTION
卷 77, 期 1-2, 页码 43-54

出版社

SPRINGER
DOI: 10.1007/s00239-013-9579-7

关键词

Maturase genes; Intron-encoded proteins; Splicing factors; Land plant genomes; Intracellular transfer

资金

  1. University of Nebraska-Lincoln
  2. National Science Foundation [IOS-1027529, MCB-1125386]
  3. Div Of Molecular and Cellular Bioscience
  4. Direct For Biological Sciences [1125386] Funding Source: National Science Foundation

向作者/读者索取更多资源

Among land plants, mitochondrial and plastid group II introns occasionally encode proteins called maturases that are important for splicing. Angiosperm nuclear genomes also encode maturases that are targeted to the organelles, but it is not known whether nucleus-encoded maturases exist in other land plant lineages. To examine the evolutionary diversity and history of this essential gene family, we searched for maturase homologs in recently sequenced nuclear and mitochondrial genomes from diverse land plants. We found that maturase content in mitochondrial genomes is highly lineage specific, such that orthologous maturases are rarely shared among major land plant groups. The presence of numerous mitochondrial pseudogenes in the mitochondrial genomes of several species implies that the sporadic maturase distribution is due to frequent inactivation and eventual loss over time. We also identified multiple maturase paralogs in the nuclear genomes of the lycophyte Selaginella moellendorffii, the moss Physcomitrella patens, and the representative angiosperm Vitis vinifera. Phylogenetic analyses of organelle- and nucleus-encoded maturases revealed that the nuclear maturase genes in angiosperms, lycophytes, and mosses arose by multiple shared and independent transfers of mitochondrial paralogs to the nuclear genome during land plant evolution. These findings indicate that plant mitochondrial maturases have experienced a surprisingly dynamic history due to a complex interaction of multiple evolutionary forces that affect the rates of maturase gain, retention, and loss.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据