4.3 Article

Short Homologous Sequences Are Strongly Associated with the Generation of Chimeric RNAs in Eukaryotes

期刊

JOURNAL OF MOLECULAR EVOLUTION
卷 68, 期 1, 页码 56-65

出版社

SPRINGER
DOI: 10.1007/s00239-008-9187-0

关键词

Chimeric RNAs; Short homologous sequences; trans-Splicing; Transcriptional slippage; Complexity of transcriptome

资金

  1. CAS-Max Planck Society Fellowship
  2. NSFC [30430400, 2007CB815703-5]

向作者/读者索取更多资源

Chimeric RNAs have been reported in varieties of organisms and are conventionally thought to be produced by trans-splicing of two or more distinct transcripts. Here, we conducted a large-scale search for chimeric RNAs in the budding yeast, fruit fly, mouse, and human. Thousands of chimeric transcripts were identified in these organisms except in yeast, in which five chimeric RNAs were observed. RT-PCR experiments for a sample of yeast and fly chimeric transcripts using specific primers show that about one-third of these chimeric RNAs can be reproduced. The results suggest that at least a considerable amount of chimeric RNAs is unlikely from aberrant transcription or splicing, and thus formation of chimeric RNAs is probably a widespread process and can greatly contribute to the complexity of the transcriptome and proteome of organisms. However, only a small fraction (< 20%) of these chimeric RNAs has GU-AG at the junction sequences which fits the classical trans-splicing model. In contrast, we observed that about half of the chimeric RNAs have short homologous sequences (SHSs) at the junction sites of the source sequences. Our sequence mutation experiments in yeast showed that disruption of SHSs resulted in the disappearance of the corresponding chimeric RNAs, suggesting that SHSs are essential for generating this kind of chimeric RNA. In addition to the classical trans-splicing model, we propose a new model, the transcriptional slippage model, to explain the generation of those chimeric RNAs synthesized from templates with SHSs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据