4.7 Article

The Atomic Structure of the Virally Encoded Antifungal Protein, KP6

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 425, 期 3, 页码 609-621

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2012.11.033

关键词

antifungal proteins; Ustilago maydis; viral killer proteins

资金

  1. Donald Danforth Plant Science Center
  2. Missouri Soybean Council

向作者/读者索取更多资源

Killer toxins are produced by several genera of yeast and filamentous fungi. A small proportion of Ustilago maydis strains produce killer toxins, to which they are resistant, but sensitive strains are the majority in the wild populations. There are three killer types (P1, P4 and P6) that secrete KP1, KP4 and KP6 toxins, respectively, which are produced only by strains persistently infected with double-stranded RNA viruses (UmV) in the cell cytoplasm. Unlike nearly all other viruses, UmV are only transmitted through mitosis or meiosis. As shown here, KP6 is different from any other known cytotoxic protein. KP6 is neutral protein composed of two subunits: KP6 alpha and KP6 beta. KP6 alpha is responsible for targeting while KP6 beta is cytotoxic. Neither subunit is homologous in either sequence or structure to any other toxin, but they have highly similar structures to each other. The major difference between the two subunits is a hydrophobic helix at the N-terminus of KP6 alpha and is likely key to target recognition. Unlike any other toxin, KP6 is translated as a single polypeptide with a 31-residue linker region in the middle of the protein. From structural prediction studies, this linker likely makes for a more compact KP6 structure that sequesters the hydrophobic helix of KP6 alpha. A model whereby the protoxin undergoes a conformational activation process that exposes this helix immediately prior to secretion is presented. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据