4.7 Article

Caspase-3 Cleavage of DUSP6/MKP3 at the Interdomain Region Generates Active MKP3 Fragments That Regulate ERK1/2 Subcellular Localization and Function

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 420, 期 1-2, 页码 128-138

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2012.04.004

关键词

DUSP6; MKP3; ERK; caspase; apoptosis

资金

  1. Ministerio de Ciencia e Innovacion (Spain and Fondo Europeo de Desarrollo Regional) [SAF2009-10226]
  2. Generalitat Valenciana [AP-040/10, ACOMP/2010/222, ACOMP/2011/164]
  3. European Union Research Training Network [MRTN-CT-2006-035830]
  4. European Union
  5. Ministerio de Ciencia e Innovacion

向作者/读者索取更多资源

MAPK (MAP kinase) phosphatase 3 (DUSP6/MKP3) is a cytosolic MKP (MAPK phosphatase) that regulates negatively ERK1/2 downstream to growth factor or apoptotic signaling. Transcription of DUSP6 gene is activated through the ERK1/2 pathway, which constitutes a feedback regulatory loop of ERK1/2 activation. However, the regulation of the function of the DUSP6/MKP3 protein is poorly known. MKP3 possesses a linker region between its N-terminal MAPK-binding domain and its C-terminal catalytic domain, which is conserved in the related MKPs DUSP7/MKPX and DUSP9/MKP4. In MKP3, the interdomain linker region contains a secondary ERK1/2 binding motif and an active nuclear export sequence. Here, we report that MKP3 protein levels are decreased in cells upon apoptotic stimulation in a caspase-dependent manner, and we identify a novel MKP3 regulatory mechanism mediated by the pro-apoptotic protease caspase-3, which involves the MKP3 interdomain linker region. Active caspase-3 targeted the linker region of MKP3 at several residues, rendering N-terminal and C-terminal MKP3 fragments that contain specific arrangements of nuclear export sequence and ERK1/2 interaction motifs. MKP3 caspase-3-generated fragments displayed differential properties to regulate ERK1/2 nuclear/cytosolic localization and activity. Our results indicate that caspase-3 cleavage of MKP3 down-regulates MKP3 full length and renders active MKP3 fragments, which may participate in novel regulatory pathways controlling the subcellular localization and activation of ERK1/2 during apoptosis. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据