4.7 Article

ALS-Causing SOD1 Mutations Promote Production of Copper-Deficient Misfolded Species

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 409, 期 5, 页码 839-852

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2011.04.027

关键词

amyotrophic lateral sclerosis; Cu,Zn superoxide dismutase; protein folding kinetics; metal binding; misfolding

资金

  1. Canadian Institutes of Health Research
  2. CIHR
  3. Ontario Ministry of Health and Long-Term Care

向作者/读者索取更多资源

Point mutations scattered throughout the sequence of Cu,Zn superoxide dismutase (SOD1) cause a subset of amyotrophic lateral sclerosis (ALS) cases. SOD1 is a homodimer in which each subunit binds one copper atom and one zinc atom. Inclusions containing misfolded SOD1 are seen in motor neurons of SOD1-associated ALS cases. The mechanism by which these diverse mutations cause misfolding and converge on the same disease is still not well understood. Previously, we developed several time-resolved techniques to monitor structural changes in SOD1 as it unfolds in guanidine hydrochloride. By measuring the rates of Cu and Zn release using an absorbance-based assay, dimer dissociation through chemical cross-linking, and beta-barrel conformation changes by tryptophan fluorescence, we established that wild-type SOD1 unfolds by a branched pathway involving a Zn-deficient monomer as the dominant intermediate of the major pathway, and with various metal-loaded and Cu-deficient dimers populated along the minor pathway. We have now compared the unfolding pathway of wild-type SOD1 with those of A4V, G37R, G85R, G93A, and I113T ALS-associated mutant SOD1. The kinetics of unfolding of the mutants were generally much faster than those of wild type. However, all of the mutants utilize the minority pathway to a greater extent than the wildtype protein, leading to greater populations of Cu-deficient intermediates and decreases in Zn-deficient intermediates relative to the wild-type protein. The greater propensity of the mutants to populate Cu-deficient states potentially implicates these species as a pathogenic form of SOD1 in SOD1-associated ALS and provides a novel target for therapeutic intervention. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据