4.7 Article

Interaction of Calmodulin with L-Selectin at the Membrane Interface: Implication on the Regulation of L-Selectin Shedding

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 411, 期 1, 页码 220-233

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2011.05.041

关键词

ectodomain shedding; protein interaction; fluorescence spectroscopy; L-selectin; calmodulin

资金

  1. National Institutes of Health [GM084175]

向作者/读者索取更多资源

The calmodulin (CaM) hypothesis of ectodomain shedding stipulates that CaM, an intracellular Ca2+-dependent regulatory protein, associates with the cytoplasmic domain of L-selectin to regulate ectodomain shedding of L-selectin on the other side of the plasma membrane. To understand the underlying molecular mechanism, we have characterized the interactions of CaM with two peptides derived from human L-selectin. The peptide ARR18 corresponds to the entire cytoplasmic domain of L-selectin (residues Ala317-Tyr334 in the mature protein), and CLS corresponds to residues Lys280-Tyr334, which contains the entire transmembrane and cytoplasmic domains of L-selectin. Monitoring the interaction by fluorescence spectroscopy and other biophysical techniques, we found that CaM can bind to ARR18 in aqueous solutions or the L-selectin cytoplasmic domain of CLS reconstituted in the phosphatidylcholine bilayer, both with an affinity of approximately 2 mu M. The association is calcium independent and dynamic and involves both lobes of CaM. In a phospholipid bilayer, the positively charged L-selectin cytoplasmic domain of CLS is associated with anionic phosphatidylserine (PS) lipids at the membrane interface through electrostatic interactions. Under conditions where the PS content mimics that in the inner leaflet of the cell plasma membrane, the interaction between CaM and CLS becomes undetectable. These results suggest that the association of CaM with L-selectin in the cell can be influenced by the membrane bilayer and that anionic lipids may modulate ectodomain shedding of transmembrane receptors. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据