4.7 Article

RCC1 Uses a Conformationally Diverse Loop Region to Interact with the Nucleosome: A Model for the RCC1-Nucleosome Complex

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 398, 期 4, 页码 518-529

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2010.03.037

关键词

chromatin biology; nucleosome recognition; guanine nucleotide exchange; mitosis; protein-protein interactions

资金

  1. National Institutes of Health [GM088236]

向作者/读者索取更多资源

The binding of RCC1 (regulator of chromosome condensation 1) to chromatin is critical for cellular processes such as mitosis, nucleocytoplasmic transport, and nuclear envelope formation because RCC1 recruits the small GTPase Ran (Ras-related nuclear protein) to chromatin and sets up a RanGTP gradient around the chromosomes. However, the molecular mechanism by which RCC1 binds to nucleosomes, the repeating unit of chromatin, is not known. We have used biochemical approaches to test structural models for how the RCC1 beta-propeller protein could bind to the nucleosome. In contrast to the prevailing model, RCC1 does not appear to use the beta-propeller face opposite to its Ran-binding face to interact with nucleosomes. Instead, we find that RCC1 uses a conformationally flexible loop region we have termed the switchback loop in addition to its N-terminal tail to bind to the nucleosome. The juxtaposition of the RCC1 switchback loop to its Ran binding surface suggests a novel mechanism for how nucleosome-bound RCC1 recruits Ran to chromatin. Furthermore, this model accounts for previously unexplained observations for how Ran can interact with the nucleosome both dependent and independent of RCC1 and how binding of the nucleosome can enhance RCC1's Ran nucleotide exchange activity. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据