4.7 Article

Nucleotide-Induced Flexibility Change in Neck Linkers of Dimeric Kinesin as Detected by Distance Measurements Using Spin-Labeling EPR

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 386, 期 3, 页码 626-636

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2008.12.079

关键词

kinesin; neck linker; flexibility; interspin distance; EPR

资金

  1. Ministry of Education, Culture, Sports, Science, and Technology
  2. Japanese Science and Technology Cooperation, Japan
  3. National Science Foundation
  4. Muscular Dystrophy Association
  5. American Heart Association
  6. Ministry of Education, Science, Sports, and Culture of Japan

向作者/读者索取更多资源

Using dipolar continuous-wave and pulsed electron paramagnetic resonance methods, we have determined the distribution of the distances between two spin labels placed on the middle of each of the neck linkers of dimeric kinesin. In the absence of microtubules, the distance was centered at 3.3 nm, but displayed a broad distribution with a width of 2.7 nm. This broad distribution implies that the linkers are random coils and extend well beyond the 2.5-nm distance expected of crystal structures. In the presence of microtubules, two linker populations were found: one similar to that observed in the absence of microtubules (a broad distribution centered at 3.3 nm), and the second population with a narrower distribution centered at 1.3-2.5 nm. In the absence of nucleotide but in the presence of microtubules, similar to 40% of the linkers were at a distance centered at 1.9 nm with a 1.2-nm width; the remaining fraction was at 3.3 nm, as before. This suggests that neck linkers exhibit dynamics covering a wide distance range between 1.0 and 5.0 n m. In the presence of ATP analogs adenosine 5'-(beta,gamma-imido)triphosphate and adenosine 5'-(gamma-thio)triphosphate, 40-50% of the spins showed a very narrow distribution centered at 1.6 nm, with a width of 0.4-0.5 nm. The remaining population displayed the broad 3.3-nm distribution. Under these conditions, a large fraction of linkers are docked firmly onto a motor core or microtubule, while the remainder is disordered. We propose that large nucleotide-dependent flexibility changes in the linkers contribute to the directional bias of the kinesin molecule stepping 8 nm along the microtubule. (c) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据