4.7 Article

Thermal Response with Exothermic Effects of β2-Microglobulin Amyloid Fibrils and Fibrillation

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 389, 期 3, 页码 584-594

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2009.04.026

关键词

amyloid fibril; aggregation; thermal response; heat capacity; hydrophobic interaction

资金

  1. Japanese Ministry of Education, Culture, Sports, Science, and Technology

向作者/读者索取更多资源

Calorimetric measurements were carried out using a differential scanning calorimeter to characterize the thermal response Of beta(2)-microglobulin amyloid fibrils, the deposition of which results in dialysis-related amyloidosis. The fibril solution showed a large decrease in heat capacity (exothermic effect) before the temperature-induced depolymerization of the fibrils, which was characterized by a definite dependence on heating rate. To understand the factors that determine the heating-rate-dependent thermal response, the concentration dependence of polyethylene glycol, which inhibits the association of amyloid fibrils with heating, on exothermic effect was examined in detail and showed a causal link between the exothermic effect and fibril association. The results suggest that the transient association driven by a spatial approach and the concomitant dehydration of hydrophobic areas of amyloid fibrils may be significant factors determining the thermal response with exothermic effect, which has not been observed in calorimetric studies of monomolecular globular proteins. The heating-rate-dependent thermal response with the exothermic effect was observed not only for other amyloid fibrils formed from amyloid beta-peptides but also during the processes of the temperature-induced conversion of beta(2)-microglobulin protofibrils and hen egg-white lysozyme into amyloid fibrils. These results highlight the physics related to the heating-rate-dependent behaviors of heat capacity in terms of interactions between the specific structures of amyloid fibrils and water molecules. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据