4.7 Article

Scrapie prion protein structural constraints obtained by limited proteolysis and mass spectrometry

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 382, 期 1, 页码 88-98

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2008.06.070

关键词

PrP; strain; structure; limited proteolysis; mass spectrometry

资金

  1. Spanish Ministry of Science and Education [EET2001-4861 and BFU2006-04588/BMC]
  2. European Union [FP6 2004 FOOD 313 023183]

向作者/读者索取更多资源

Elucidation of the structure of scrapie prion protein (PrPSc), essential to understand the molecular mechanism of prion transmission, continues to be one of the major challenges in prion research and is hampered by the insolubility and polymeric character of PrPSc. Limited proteolysis is a useful tool to obtain insight on structural features of proteins: proteolytic enzymes cleave proteins more readily at exposed sites, preferentially within loops, and rarely in beta-strands. We treated PrPSc isolated from brains of hamsters infected with 263K and drowsy prions with varying concentrations of proteinase K (PK). After PK deactivation, PrPSc was denatured, reduced, and cleaved at Cys179 with 2-nitro-5-thiocyanatobenzoic acid. Fragments were analyzed by nano-HPLC/mass spectrometry and matrix-assisted laser desorption/ionization. Besides the known cleavages at positions 90, 86, and 92 for 263K prions and at positions 86, 90, 92, 98, and 1.01 for drowsy prions, our data clearly demonstrate the existence of additional cleavage sites at more internal positions, including 117, 119, 135, 139, 142, and 154 in both strains. PK concentration dependence analysis and limited proteolysis after partial unfolding of PrPSc confirmed that only the mentioned cleavage sites at the N-terminal side of the PrPSc are susceptible to PK. Our results indicate that besides the classic amino-terminal PK cleavage points, PrPSc contains, in its middle core, regions that show some degree of susceptibility to proteases and must therefore correspond to subdomains with some degree of structural flexibility, interspersed with stretches of an-Lino acids of high resistance to proteases. These results are compatible with a structure consisting of short beta-sheet stretches connected by loops and turns. (C) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据