4.7 Article

The solution structure and dynamics of human pancreatic ribonuclease determined by NMR spectroscopy provide insight into its remarkable biological activities and inhibition

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 379, 期 5, 页码 953-965

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2008.04.042

关键词

anti-tumor potential-structure relationship; ribonuclease activity; ribonuclease inhibition; internal dynamics; NMR spectroscopy

向作者/读者索取更多资源

Human pancreatic ribonuclease (RNase 1) is expressed in many tissues; has several important enzymatic and biological activities, including efficient cleavage of single-stranded RNA, double-stranded RNA and double-stranded RNA-DNA hybrids, digestion of dietary RNA, regulation of vascular homeostasis, inactivation of the HIV, activation of immature dendritic cells and induction of cytokine production; and furthermore shows potential as an anti-tumor agent. The solution structure and dynamics of uncomplexed, wild-type RNase 1 have been determined by NMR spectroscopy methods to better understand these activities. The family of 20 structures determined on the basis of 6115 unambiguous nuclear Over hauser enhancements is well resolved (pairwise backbone RMSD = 1.07 angstrom) and has the classic RNase A type of tertiary structure. Important structural differences compared with previously determined crystal structures of RNase 1 variants or inhibitor-bound complexes ate observed in the conformation of loop regions and side chains implicated in the enzymatic as well as biological activities and binding to the cytoplasmic RNase inhibitor. Multiple side chain conformations observed for key surface residues are proposed to be crucial for membrane binding as well as translocation and efficient RNA hydrolysis. N-15-H-1 relaxation measurements interpreted with the standard and our extended Lipari-Szabo formalism reveal rigid regions and identify more dynamic loop regions. Some of the most dynamic areas are key for binding to the cytoplasmic RNase inhibitor. This finding and the important differences observed between the structure in solution and that bound to the inhibitor are indications that RNase 1 to inhibitor binding can be better described by the induced fit model rather than the rigid lock-into-key mechanism. Translational diffusion measurements reveal that RNase 1 is predominantly dimeric above 1 mM concentration; the possible implications of this dimeric state for the remarkable biological properties of RNase 1 are discussed. (C) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据