4.7 Article

An entirely cell-based system to generate single-chain antibodies against cell surface receptors

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 379, 期 2, 页码 261-272

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2008.03.072

关键词

toll-like receptor; antibody; phage-displayed antibody; cell-surface antigen; flow cytometry

资金

  1. NIAID NIH HHS [U19-AI056572, U19 AI056572-05, U19 AI056572-010003, U19 AI056572] Funding Source: Medline

向作者/读者索取更多资源

The generation of recombinant antibodies (Abs) using phage display is a proven method to obtain a large variety of Abs that bind with high affinity to a given antigen. Traditionally, the generation of single-chain Abs depends on the use of recombinant proteins in several stages of the procedure. This can be a problem, especially in the case of cell-surface receptors, because Abs generated and selected against recombinant proteins may not bind the same protein expressed on a cell surface in its native form and because the expression of some receptors as recombinant proteins is problematic. To overcome these difficulties, we developed a strategy to generate single-chain Abs that does not require the use of recombinant protein at any stage of the procedure. In this strategy, stably transfected cells are used for the immunization of mice, measuring Ab responses to immunization, panning the phage library, high-throughput screening of arrayed phage clones, and characterization of recombinant single-chain variable regions. This strategy was used to generate a panel of single-chain Abs specific for the innate immunity receptor Toll-like receptor 2. Once generated, individual single-chain variable regions were subcloned into an expression vector allowing the production of recombinant Abs in insect cells, thus avoiding the contamination of recombinant Abs with microbial products. This cell-based system efficiently generates Abs that bind to native molecules on the cell surface, bypasses the requirement of recombinant protein production, and avoids risks of microbial component contamination. (C) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据