4.7 Article

Crystal structure of a core domain of stomatin from Pyrococcus horikoshii illustrates a novel trimeric and coiled-coil fold

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 376, 期 3, 页码 868-878

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2007.12.024

关键词

stomatin; archaea; coiled coil; Pyrococcus horikoshii; flotillin

向作者/读者索取更多资源

Stomatin is a major integral membrane protein of human erythrocytes, the absence of which is associated with a form of hemolytic anemia known as hereditary stomatocytosis. However, the function of stomatin is not fully understood. An open reading frame, PH1511, from the hyperthermophilic archaeon Pyrococcus horikoshii encodes p-stomatin, a prokaryotic stomatin. Here, we report the first crystal structure of a stomatin ortholog, the core domain of the p-stomatin PH1511p (residues 56-234 of PH1511p, designated as PhSto(CD)). PhSto(CD) forms a novel homotrimeric structure. Three alpha/beta domains form a triangle of about 50 angstrom on each. side, and three alpha-helical segments of about 60 angstrom in length extend from the apexes of the triangle. The alpha/beta domain of PhSto(CD) is partly similar in structure to the band-7 domain of mouse flotillin-2. While the alpha/beta domain is relatively rigid, the a-helical segment shows conformational flexibility, adapting to the neighboring environment. One alpha-helical segment forms an anti-parallel coiled coil with another alpha-helical segment from a symmetry-related molecule. The alpha-helical segment shows a heptad repeat pattern, and mainly hydrophobic residues form a coiled-coil interface. According to chemical cross-linking experiments, PhSto(CD) would be able to assemble into an oligomeric form. The coiled-coil fold observed in the crystal probably contributes to self-association. (C) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据