4.5 Article

Regulation of microRNA expression in the heart by the ATF6 branch of the ER stress response

期刊

JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY
卷 52, 期 5, 页码 1176-1182

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.yjmcc.2012.01.017

关键词

ER stress; ATF6; miRNA; Calreticulin; Cardiac

资金

  1. National Institutes of Health [HL-075573, HL-085577, HL104535, R03 EB011698]
  2. San Diego Chapter of the Achievement Rewards for College Scientists (ARCS) Foundation
  3. American Heart Association [0815210F]

向作者/读者索取更多资源

A nodal regulator of endoplasmic reticulum stress is the transcription factor, ATF6, which is activated by ischemia and protects the heart from ischemic damage, in vivo. To explore mechanisms of ATF6-mediated protection in the heart, a whole-genome microRNA (miRNA) array analysis of RNA from the hearts of ATF6 transgenic (TG) mice was performed. The array identified 13 ATF6-regulated miRNAs, eight of which were downregulated, suggesting that they could contribute to increasing levels of their mRNAs. The downregulated miRNAs, including miR-455, were predicted to target 45 mRNAs that we had previously shown by microarray analysis to be up-regulated by ATF6 in the heart. One of the miR-455 targets was calreticulin (Calr). which is up-regulated in the pathologic heart, where it modulates hypertrophic growth, potentially reducing the impact of the pathology. To validate the effects of miR-455, we showed that Calr protein was increased by ATF6 in mouse hearts, in vivo. In cultured cardiac myocytes, treatment with the ER stressor, tunicamycin, or with adenovirus encoding activated ATF6 decreased miR-455 and increased Calr levels, consistent with the effects of ATF6 on miR-455 and Calr, in vivo. moreover, transfection of cultured cardiac myocytes with a synthetic precursor, premiR-455, decreased Calr levels, while transfection with an antisense, antimiR-455, increased Calr levels. The results of this study suggest that ER stress can regulate gene expression via ATF6-mediated changes in micro-RNA levels. Moreover, these findings support the hypothesis that ATF6-mediated down-regulation of miR-455 augments Calr expression, which may contribute to the protective effects of ATF6 in the heart. (c) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据