4.5 Article

Loss of fibulin-2 protects against progressive ventricular dysfunction after myocardial infarction

期刊

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.yjmcc.2011.11.001

关键词

Cardiac remodeling; Wound healing; Extracellular matrix; Transforming growth factor-beta; Coronary artery ligation

资金

  1. National Institutes of Health [GM55625, P20 RR020173]
  2. Nemours Cardiac Center, Alfred I. duPont Hospital for Children

向作者/读者索取更多资源

Remodeling of the cardiac extracellular matrix (ECM) is an integral part of wound healing and ventricular adaptation after myocardial infarction (MI), but the underlying mechanisms remain incompletely understood. Fibulin-2 is an ECM protein upregulated during cardiac development and skin wound healing, yet mice lacking fibulin-2 do not display any identifiable phenotypic abnormalities. To investigate the effects of fibulin-2 deficiency on ECM remodeling after MI, we induced experimental MI by permanent coronary artery ligation in both fibulin-2 null and wild-type mice. Fibulin-2 expression was up-regulated at the infarct border zone of the wild-type mice. Acute myocardial tissue responses after MI, including inflammatory cell infiltration and ECM protein synthesis and deposition in the infarct border zone, were markedly attenuated in the fibulin-2 null mice. However, the fibulin-2 null mice had significantly better survival rate after MI compared to the wild-type mice as a result of less frequent cardiac rupture and preserved left ventricular function. Up-regulation of TGF-beta signaling and ECM remodeling after MI were attenuated in both ischemic and non-ischemic myocardium of the fibulin-2 null mice compared to the wild type counterparts. Increase in TGF-beta signaling in response to angiotensin II was also lessened in cardiac fibroblasts isolated from the fibulin-2 null mice. The studies provide the first evidence that absence of fibulin-2 results in decreased up-regulation of TGF-beta signaling after MI and protects against ventricular dysfunction, suggesting that fibulin-2 may be a potential therapeutic target for attenuating the progression of ventricular remodeling. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据