4.5 Article

Allele and species dependent contractile defects by restrictive and hypertrophic cardiomyopathy-linked troponin I mutants

期刊

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.yjmcc.2008.02.274

关键词

inherited cardiomyopathy; cardiac troponin I; myocyte; contraction

资金

  1. NHLBI NIH HHS [R01 HL059301-05A1, R01 HL060048-01A1, R01 HL060048, R01 HL059301] Funding Source: Medline

向作者/读者索取更多资源

Restrictive cardiomyopathy (RCM) is a debilitating disease characterized by impaired ventricular filling, reduced ventricular volumes, and severe diastolic dysfunction. Hypertrophic cardiomyopathy (HCM) is characterized by ventricular hypertrophy and heightened risk of premature sudden cardiac death. These cardiomyopathies can result from mutations in the same gene that encodes for cardiac troponin I (cTnI). Acute genetic engineering of adult rat cardiac myocytes was used to ascertain whether primary physiologic outcomes could distinguish between RCM and HCM alleles at the cellular level. Co-transduction of cardiac myocytes with wild-type (WT) cTnI and RCM/HCM linked mutants in cTnI's inhibitory region (IR) demonstrated that WT cTnI preferentially incorporated into the sarcomere over IR mutants. The cTnI IR mutants exhibited minor effects in single myocyte Ca2+-activated tension assays yet prolonged relaxation and Ca2+ decay. In comparison RCM cTnI mutants in the helix-4/C-terminal region demonstrated a) hyper-sensitivity to Ca2+ under loaded conditions, b) slowed myocyte mechanical relaxation and Ca2+ transient decay, c) frequency-dependent Ca2+-independent diastolic tone, d) heightened myofilament incorporation and e) irreversible cellular contractile defects with acute diltiazern administration. For species comparison, a subset of cTnI mutants were tested in isolated adult rabbit cardiac myocytes. Here, RCM and HCM mutant cTnIs exerted similar effects of slowed myocyte relaxation and Ca2+ transient decay but did not show variable phenotypes by cTnI region. This study highlights cellular contractile defects by cardiomyopatby mutant cTnIs that are allele and species dependent. The species dependent results in particular raise important issues toward elucidating a unifying mechanistic pathway underlying the inherited cardiomyopathies. (C) 2008 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据