4.3 Article

Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope

期刊

JOURNAL OF MICROSCOPY-OXFORD
卷 229, 期 1, 页码 78-91

出版社

BLACKWELL PUBLISHING
DOI: 10.1111/j.1365-2818.2007.01871.x

关键词

correlation spectroscopy; FCS; ICS; RICS

资金

  1. NATIONAL CENTER FOR RESEARCH RESOURCES [P41RR003155] Funding Source: NIH RePORTER
  2. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R37GM023244, U54GM064346, R01GM023244] Funding Source: NIH RePORTER
  3. NCRR NIH HHS [5 P41 RR003155, P41 RR003155] Funding Source: Medline
  4. NIGMS NIH HHS [R01 GM023244-33, GM23244, R01 GM023244, R37 GM023244, U54 GM064346, U54 GM064346-07, U54 GM64346] Funding Source: Medline

向作者/读者索取更多资源

Raster image correlation spectroscopy (RICS) is a new and novel technique for measuring molecular dynamics and concentrations from fluorescence confocal images. The RICS technique extracts information about molecular dynamics and concentrations from images of living cells taken on commercial confocal systems. Here we develop guidelines for performing the RICS analysis on an analogue commercial laser scanning confocal microscope. Guidelines for typical instrument settings, image acquisition settings and analogue detector characterization are presented. Using appropriate instrument/acquisition parameters, diffusion coefficients and concentrations can be determined, even for highly dynamic dye molecules in solution. Standard curves presented herein demonstrate the ability to detect protein concentrations as low as similar to 2 nM. Additionally, cellular measurements give accurate values for the diffusion of paxillin-enhanced-green fluorescent protein (EGFP), an adhesion adaptor molecule, in the cytosol of the cell and also show slower paxillin dynamics near adhesions where paxillin interacts with immobile adhesion components. Methods are presented to account for bright immobile structures within the cell that dominate spatial correlation functions; allowing the extraction of fast protein dynamics within and near these structures. A running average algorithm is also presented to address slow cellular movement or movement of cellular features such as adhesions. Finally, methods to determine protein concentration in the presence of immobile structures within the cell are presented. A table is presented giving guidelines for instrument and imaging setting when performing RICS on the Olympus FV300 confocal and these guidelines area starting point for performing the analysis on other commercial confocal systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据