4.4 Article

Alternated process for the deep etching of titanium

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0960-1317/24/7/075021

关键词

titanium; deep etching; APETi; nickel mask; SF6; SiCl4; Cl-2; Ar; ICP; roughness; reproducibility; selectivity; plasma

向作者/读者索取更多资源

Titanium is increasingly used as a platform material in microdevices dedicated to biological and bio medical applications. Existing processes for titanium deep etching use a chlorine based chemistry. This paper reports on a low reproducibility for such chemistries when titanium samples are glued onto a silicon carrier wafer. In this case, a SiOCl layer redeposits on the chamber walls as well as on the sample surface. This leads to a decrease of the etch rate and the formation of a very high roughness with a similar morphology as black silicon. The alternated process for the deep etching of titanium (APETi) described in this paper has been designed to improve the overall reproducibility by preventing high roughness formation. It is a time-multiplexed process where Cl-2/Ar plasma steps are alternated with SF6 plasma steps. The first step aims at etching with vertical walls (anisotropy) while the second aims at reducing the roughness by removing SiOCl from the sample surface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据