4.4 Article

A microfluidic platform with a free-standing perforated polymer membrane

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0960-1317/20/8/085011

关键词

-

资金

  1. National Science Foundation [CMMI-0643455]
  2. Louisiana Board of Regents-RCS [LEQSF (2006-09)-RD-A-09]
  3. Center for Advanced Microstructures and Devices (CAMD), Louisiana State University

向作者/读者索取更多资源

A membrane architecture that facilitates access from both sides in microfluidic environments provides a flexible platform for the study of biosystems. Here, we report for the first time on a simple and low cost fabrication process via nanoimprint lithography (NIL) for a thin, fully released SU-8 membrane with perforated micro- and sub-micron pores and a modular microfluidic system integrated with the membrane. A modified NIL process which combines thermal and UV NIL was employed to define the pore structures in an SU-8 layer coated on a sacrificial layer. We have demonstrated the production of large area SU-8 membranes of as large as 4 inch diameter that are fully covered with perforated micropores. The released SU-8 membrane was easily integrated as a modular component into a microfluidic system by sandwiching the membrane between two microfluidic chips. Important aspects to reliably produce the membrane architecture such as materials selection and process conditions for fabrication are discussed. After demonstrating selective adsorption of lipid vesicles at the micropore sites of the SU-8 membrane, we have reconstituted lipid bilayers at the micropores within the microfluidic system following the method developed by Suzuki et al (2004 Lab Chip 4 502-5). This implies that the membrane architecture can potentially be used as a microfluidic platform with lipid bilayers that can sustain external mechanical stress for biophysical studies of membrane proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据