4.4 Article Proceedings Paper

Fabrication, characterization and modelling of electrostatic micro-generators

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0960-1317/19/9/094001

关键词

-

向作者/读者索取更多资源

This paper presents an electrostatic energy-harvesting device for electrical energy extraction from vibrations. We successfully fabricated prototypes of completely packaged micro-generators with a chip size of 5 mm by 6 mm. This was achieved using a modified SOI technology developed for inertial sensors at HSG-IMIT. Micro-generators produce a maximum rms power of 3.5 mu W when they are excited at their resonance frequency with an input excitation of 13 g. During a long-term experiment over a period of 2 h, the electrostatic energy harvester generated a total net energy of 13.38 mJ corresponding to an average power of 1.58 mu W. The effect of mechanical stoppers and the bias voltage on the generated power is also evaluated. In order to get a more profound understanding of the dynamic behaviour of the micro-generator, we have developed a signal-flow model for numerical simulation of the electrostatic transducer on system level. This model includes a mechanical and an electrical domain which are coupled by electrostatic forces. The limited displacement of the proof mass is also considered using an elastic stopper model. We show that the numerical model is capable of providing good predictions of the device behaviour.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据