4.4 Article

A slow-adapting microfluidic-based tactile sensor

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0960-1317/19/8/085002

关键词

-

资金

  1. DARPA Revolutionary Prosthetics Program (RPP) [908006, N66001-06-C-8005]

向作者/读者索取更多资源

We present a microfluidic-based tactile sensor mimicking the human slow-adapting mechanoreceptor such as Merkel's disc. The sensor is composed of a polyimide (PI)/polydimethylsiloxane (PDMS) multilayer structure. The device uses a hemispherical reservoir filled with electrolyte solution in the PDMS layer, a microchannel in the PI layer and a pair of sensing electrodes below the microchannel as the force transducer. The tactile signal is detected as the impedance change resulting predominantly from the resistance variance due to the electrodes coverage by the 1M NaCl solution and is measured across the electrode pair. The sensor response is linear and the working range is shown to be in the range of 0-1.8 N. The characterization results also demonstrate the sensing of various levels of forces and its long-term signal stability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据