4.4 Article

M3EDM:: MEMS-enabled micro-electro-discharge machining

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0960-1317/18/10/105009

关键词

-

资金

  1. NSERC

向作者/读者索取更多资源

This paper reports a photolithography compatible micro-electro-discharge machining technique that is performed with microelectrode actuators driven by hydrodynamic force. The movable planar electrodes suspended by the anchors are microfabricated directly on the workpiece. The electrode structures with fixed-fixed and cantilever configurations are defined by patterning 18 mu m thick copper foil laminated on the workpiece through an intermediate photoresist layer and released by sacrificial etching of the resist layer. All the patterning and sacrificial etching steps are performed using dry-film photoresists towards achieving high scalability of the machining technique to large-area applications. The parasitic capacitance of the electrode structure is used to form a resistance-capacitance circuit for the generation of pulsed spark discharge between the electrode and the workpiece. The suspended electrodes are actuated towards the workpiece using the downflow of dielectric machining fluid, initiating and sustaining the machining process. Micromachining of stainless steel is experimentally demonstrated with a machining voltage of 90 V and continuous flow of the fluid at a velocity of 3.4-3.9 m s(-1), providing a removal depth of 20 mu m with an average surface roughness of 520 nm. The experimental results of the electrode actuation are shown to agree well with the theoretical estimations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据