4.3 Article

Long-circulating poly(ethylene glycol)-coated poly(lactid-co-glycolid) microcapsules as potential carriers for intravenously administered drugs

期刊

JOURNAL OF MICROENCAPSULATION
卷 30, 期 7, 页码 632-642

出版社

TAYLOR & FRANCIS LTD
DOI: 10.3109/02652048.2013.770098

关键词

PEG; PLGA; PVA; microcapsules; solvent evaporation; drug carrier

向作者/读者索取更多资源

The intrinsic advantages of microcapsules with regard to nanocapsules as intravenous drug carrier systems are still not fully exploited. Especially, in clinical situations where a long-term drug release within the vascular system is desired, if large amounts of drug have to be administered or if capillary leakage occurs, long-circulating microparticles may display a superior alternative to nanoparticles. Here, microcapsules were synthesised and parameters such as in vitro tendency of agglomeration, protein adsorption and in vivo performance were investigated. Biocompatible poly(ethylene glycol) (PEG)-coated poly(DL-lactide-co-glycolide) (PLGA) as wall material, solid and perfluorodecalin (PFD)-filled PEG-PLGA microcapsules (1.5 mu m diameter) were manufactured by using a modified solvent evaporation method with either 1% poly(vinyl alcohol) (PVA) or 1.5% cholate as emulsifying agents. Compared to microcapsules manufactured with cholate, the protein adsorption (albumin and IgG) was clearly decreased and agglomeration of capsules was prevented, when PVA was used. The intravenous administration of these microcapsules, both solid and PFD-filled, in rats was successful and exhibited a circulatory half-life of about 1 h. Our data clearly demonstrate that PEG-PLGA microcapsules, manufactured by using PVA, are suitable biocompatible, long-circulating drug carriers, applicable for intravenous administration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据