4.3 Article

Automated counting of bacterial colonies on agar plates based on images captured at near-infrared light

期刊

JOURNAL OF MICROBIOLOGICAL METHODS
卷 153, 期 -, 页码 66-73

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.mimet.2018.09.004

关键词

Agar plate; Colony counting; Identification; Image analysis; Near-infrared

资金

  1. Shaanxi Undergraduates Training Project for Innovation and Entrepreneurship [S201710701028]
  2. National Natural Science Foundation of China [61571354]

向作者/读者索取更多资源

Counting colonies is usually used in microbiological analysis to assess if samples meet microbiological criteria. Although manual counting remains gold standard, the process is subjective, tedious, and time-consuming. Some developed automatic counting methods could save labors and time, but their results are easily affected by uneven illumination and reflection of visible light. To offer a method which counts colonies automatically and is robust to light, we constructed a convenient and cost-effective system to obtain images of colonies at near-infrared light, and proposed an automatic method to detect and count colonies by processing images. The colonies cultured by using raw cows' milk were used as identification objects. The developed system mainly consisted of a visible/near-infrared camera and a circular near-infrared illuminator. The automatic method proposed to count colonies includes four steps, i.e., eliminating noises outside agar plate, removing plate rim and wall, identifying and separating clustered or overlapped colonies, and counting colonies by using connected region labelling, distance transform, and watershed algorithms, etc. A user-friendly graphic user interface was also developed for the proposed method. The relative error and counting time of the automatic counting method were compared with those of manual counting. The results showed that the relative error of the automatic counting method was -7.4%similar to + 8.3%, with average relative error of 0.2%, and the time used for counting colonies on each agar plate was 11-21 s, which was 15-75% of the time used in manual counting, depending on the numbers of colonies on agar plates. The proposed system and automatic counting method demonstrate promising performance in terms of precision, and they are robust and efficient in terms of labor- and time-ssavings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据