4.7 Article

Cross-flow microfiltration of fermentation broth containing native corn starch

期刊

JOURNAL OF MEMBRANE SCIENCE
卷 427, 期 -, 页码 118-128

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.memsci.2012.09.046

关键词

Native corn starch; Microfiltration; Transmembrane pressure; Cross-flow velocity

资金

  1. Ministry of Science and Higher Education [IP2010 002570 Iuventus Plus]

向作者/读者索取更多资源

Cross-flow microfiltration of fermented mash containing native corn starch granules from a simultaneous saccharification and fermentation process, was investigated with respect to the process performance. Influence of transmembrane pressure and cross-flow velocity on normalized permeate flux rate decline and membrane fouling were examined. The microfiltration system was equipped with a tubular ceramic membrane with 0.45 mu m pore size. A combined pore-blockage-cake-filtration model was successfully used to determine the process performance and identify principal fouling mechanisms. Experimental results revealed that the fouling phenomenon taking place during microfiltration of the fermented mash follows a pattern of initial complete pore blockage and subsequent cake formation. As a result, initial rapid flux decline is followed by gradual flux decline. Fouled membranes were characterized using scanning electron microscopy (SEM). The membrane surface characteristics examined by SEM images evidenced formation of dense deposit on the upper membrane surface. Rinsing the fouled membrane with water followed by investigation of the permeate flux rate indicated occurrence of increased fouling, when microfiltration was carried out at high transmembrane pressure. The highest normalized flux decline was observed for microfiltration operated at the highest transmembrane pressure (1.4 bar) and the lowest cross flow velocity (1 ms(-1)). It is recommended to use high cross-flow velocity (4.55 ms(-1)) and low transmembrane pressure (0.35 bar) to minimize membrane fouling, triggered by components of the fermented mash. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据