4.7 Article

Modulating molecular and nanoparticle transport in flexible polydimethylsiloxane membranes

期刊

JOURNAL OF MEMBRANE SCIENCE
卷 401, 期 -, 页码 25-32

出版社

ELSEVIER
DOI: 10.1016/j.memsci.2012.01.015

关键词

Modulating transport; Flexible membranes; Polydimethylsiloxane; Nanoparticles; Mechanical stretching

资金

  1. National Science Foundation
  2. National Institute of Health (NIH)
  3. Materials Technology Center (MTC)
  4. ORDA at SIUC
  5. NSF-REU
  6. NSF [CHE-0959568]
  7. Direct For Mathematical & Physical Scien
  8. Division Of Chemistry [0748676] Funding Source: National Science Foundation

向作者/读者索取更多资源

The ability to fabricate flexible filtration membranes that can selectively separate particles of different sizes is of considerable interest. In this article, we describe a facile, reproducible and simple one-step method to produce pores in polydimethylsiloxane (PDMS) membranes. We embedded micron-sized NaHCO3 particles in 50 mu m thick PDMS films. After curing, the membranes were immersed in concentrated HCl acid. Pores were generated in the membrane by the evolution of CO2 gas from the reaction of NaHCO3 and HCl. High resolution scanning electron microscope images clearly reveal the presence of openings on the surface and the cross-section of the membranes. Fluorescence and back-scattered electron imaging of porous PDMS membrane with embedded gold nanoparticles and comparison with non-porous PDMS membranes provided unambiguous evidence of pores in the membrane. Transport studies of molecular fluoresceinate ions, ions (sodium and chloride) and 240 nm polystyrene nanoparticles through these membranes demonstrate passable pores and existence of channels within the body of the membrane. Mechanically stretching the porous PDMS membrane and comparing the flow rates of fluoresceinate ions and the polystyrene beads through the stretched and unstretched membranes allowed a direct proof of the modulation of transport rate in the membranes. We show that stretching the membranes by 10% increases the flow rate of fluorescein molecules by 2.8 times and by a factor of approximately similar to 40% for the polystyrene nanoparticles. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据