4.7 Article

Performance of nitrile-containing anions in task-specific ionic liquids for improved CO2/N2 separation

期刊

JOURNAL OF MEMBRANE SCIENCE
卷 353, 期 1-2, 页码 177-183

出版社

ELSEVIER
DOI: 10.1016/j.memsci.2010.02.045

关键词

Gas separations; Room temperature ionic liquids; Carbon dioxide; Supported liquid membranes

资金

  1. Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy

向作者/读者索取更多资源

This work explores the performance of a series of ionic liquids that incorporate a nitrile-containing anion paired to 1-alkyl-3-methylimidazolium cations in tailoring the selectivity and permeance of supported ionic liquid membranes for CO2/N-2 separations. The permeance and selectivity of three ionic liquids, each with an increasing number of nitrile groups in the anion (i.e., two, three, and four), were measured using a non-steady-state permeation method. By predictably varying the molar volume and viscosity of the ionic liquids, we show that the solubility, selectivity, and permeance can be optimized for CO2/N-2 separation through controlled introduction of the nitrile functionality into the anion. Of the three nitrile-based ionic liquids studied, 1-ethyl-3-methylimidazolium tetracyanoborate, [emim][B(CN)(4)], showed the highest permeance with a value of 2.55 x 10(-9) mol/(m(2) Pa s), a magnitude 30% higher than that of the popular ionic liquid [emim][Tf2N]. This same nitrile-bearing ionic liquid also exhibited a high CO2/N-2 selectivity of approximately 53. Additionally, the carbon dioxide solubility for each ionic liquid was measured at room temperature with [emim][B(CN)(4)] again exhibiting the highest CO2 solubility. Results from our study of the nitrile-based ionic liquids can be rationalized in terms of regular solution theory wherein the selectivity and permeance of a given SILM system are largely determined by the molar volume and viscosity of the corresponding ionic liquid phase. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据