4.7 Article

Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO)

期刊

JOURNAL OF MEMBRANE SCIENCE
卷 365, 期 1-2, 页码 34-39

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.memsci.2010.08.036

关键词

Forward osmosis; Reverse osmosis; Cake-enhanced osmotic pressure (CEOP); Fouling reversibility

资金

  1. Ministry of Education, Science and Technology [R33-10046]
  2. Ministry of Land, Transport and Maritime Affairs (MLTM)

向作者/读者索取更多资源

Fouling behaviors during forward osmosis (FO) and reverse osmosis (RO) are compared. Alginate, humic acid, and bovine serum albumin (BSA) are used as model organic foulants, and two suspensions of silica colloids of different sizes are chosen as model particulate foulants. To allow meaningful comparison of fouling behavior, identical hydrodynamic operating conditions (i.e., initial permeate flux and cross-flow velocity) and feed water chemistries (i.e., pH, ionic strength, and calcium concentration) are employed during FO and RO fouling runs. The observed flux-decline behavior in FO changed dramatically with the type of organic foulant, size of colloidal foulant, and the type of the draw solution employed to generate the osmotic driving force. Based on these experimental data and the systematic comparisons of fouling behaviors of FO and RO, we provide new insights into the mechanisms governing FO fouling. In FO, reverse diffusion of salt from the draw solution to the feed side exacerbates the cake-enhanced osmotic pressure within the fouling layer. The elevated osmotic pressure near the membrane surface on the feed side leads to a substantial drop in the net osmotic driving force and, thus, significant decline of permeate flux. Our results further suggest that the structure (i.e., thickness and compactness) of the fouling layers of FO and RO is quite different. By varying the cross-flow velocity during the organic fouling runs, we were able to examine the fouling reversibility in FO and RO. The permeate flux during organic fouling in FO recovered almost completely with increasing cross-flow velocity, while no noticeable change was observed for the RO system. Our results suggest that organic fouling in FO could be controlled effectively by optimizing the hydrodynamics in the feed stream without employing chemical cleaning. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据