4.7 Article

Nuclear magnetic resonance microscopy studies of membrane biofouling

期刊

JOURNAL OF MEMBRANE SCIENCE
卷 323, 期 1, 页码 37-44

出版社

ELSEVIER
DOI: 10.1016/j.memsci.2008.06.012

关键词

spiral wound membrane; reverse osmosis; nanofiltration; biofouling; NMR

资金

  1. EPSRC [EP/E012205/1, GR/S20789/01]
  2. Engineering and Physical Sciences Research Council [GR/S20789/01] Funding Source: researchfish

向作者/读者索取更多资源

There is a substantial need for novel measurement techniques that enable non-invasive spatially resolved observation of biofouling in nanofiltration (NF) and reverse osmosis (RO) membrane modules. Such measurements will enhance our understanding of the key design and operational parameters influencing biofilm fouling. In this study we demonstrate the first application of nuclear magnetic resonance microscopy (NMR) to a spiral wound reverse osmosis (RO) membrane module. The presented NMR protocols allow the extraction of the evolution with biofouling of (i) the spatial biofilm distribution in the membrane module, (ii) the spatially resolved velocity field and (iii) displacement propagators, which are distributions of molecular displacement of a passive tracer (in our case, water) in the membrane. From these measurements, the effective membrane surface area is quantified. Despite the opaque nature of membrane design, NMR microscopy is shown to be able to provide a non-invasive quantitative measurement of RO membrane biofouling and its impact on hydrodynamics and mass transport. Minimal biofilm growth is observed to have a substantial impact on flow field homogeneity. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据