4.1 Article

Molecular Dynamics Simulations of Lipid Membrane Electroporation

期刊

JOURNAL OF MEMBRANE BIOLOGY
卷 245, 期 9, 页码 531-543

出版社

SPRINGER
DOI: 10.1007/s00232-012-9434-6

关键词

Millisecond pulse; Nanopulse; Electric field; Nanopore

资金

  1. GENCI-CINES [2010-2011 075137]
  2. French Agence Nationale de la Recherche [ANR-10_BLAN-916-03-INTCELL]

向作者/读者索取更多资源

The permeability of cell membranes can be transiently increased following the application of external electric fields. Theoretical approaches such as molecular modeling provide a significant insight into the processes affecting, at the molecular level, the integrity of lipid cell membranes when these are subject to voltage gradients under similar conditions as those used in experiments. This article reports on the progress made so far using such simulations to model membrane-lipid bilayer-electroporation. We first describe the methods devised to perform in silico experiments of membranes subject to nanosecond, megavolt-per-meter pulsed electric fields and of membranes subject to charge imbalance, mimicking therefore the application of low-voltage, long-duration pulses. We show then that, at the molecular level, the two types of pulses produce similar effects: provided the TM voltage these pulses create are higher than a certain threshold, hydrophilic pores stabilized by the membrane lipid headgroups form within the nanosecond time scale across the lipid core. Similarly, when the pulses are switched off, the pores collapse (close) within similar time scales. It is shown that for similar TM voltages applied, both methods induce similar electric field distributions within the membrane core. The cascade of events following the application of the pulses, and taking place at the membrane, is a direct consequence of such an electric field distribution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据