4.1 Article

Analysis of Plasma Membrane Integrity by Fluorescent Detection of Tl+ Uptake

期刊

JOURNAL OF MEMBRANE BIOLOGY
卷 236, 期 1, 页码 15-26

出版社

SPRINGER
DOI: 10.1007/s00232-010-9269-y

关键词

Electroporation; Nanosecond electric pulses; Nanopores; Thallium; Cell membrane; Dye uptake; Membrane integrity

资金

  1. National Cancer Institute [R01CA125482]

向作者/读者索取更多资源

The exclusion of polar dyes by healthy cells is widely employed as a simple and reliable test for cell membrane integrity. However, commonly used dyes (propidium, Yo-Pro-1, trypan blue) cannot detect membrane defects which are smaller than the dye molecule itself, such as nanopores that form by exposure to ultrashort electric pulses (USEPs). Instead, here we demonstrate that opening of nanopores can be efficiently detected and studied by fluorescent measurement of Tl+ uptake. Various mammalian cells (CHO, GH3, NG108), loaded with a Tl+-sensitive fluorophore FluxOR (TM) and subjected to USEPs in a Tl+-containing bath buffer, displayed an immediate (within < 100 ms), dose-dependent surge of fluorescence. In all tested cell lines, the threshold for membrane permeabilization to Tl+ by 600-ns USEP was at 1-2 kV/cm, and the rate of Tl+ uptake increased linearly with increasing the electric field. The lack of concurrent entry of larger dye molecules suggested that the size of nanopores is less than 1-1.5 nm. Tested ion channel inhibitors as well as removal of the extracellular Ca2+ did not block the USEP effect. Addition of a Tl+-containing buffer within less than 10 min after USEP also caused a fluorescence surge, which confirms the minutes-long lifetime of nanopores. Overall, the technique of fluorescent detection of Tl+ uptake proved highly effective, noninvasive and sensitive for visualization and analysis of membrane defects which are too small for conventional dye uptake detection methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据