4.7 Article

Pyrimidine Nucleotides with 4-Alkyloxyimino and Terminal Tetraphosphate δ-Ester Modifications as Selective Agonists of the P2Y4 Receptor

期刊

JOURNAL OF MEDICINAL CHEMISTRY
卷 54, 期 12, 页码 4018-4033

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jm101591j

关键词

-

资金

  1. NIGMS [GM38213]
  2. NIDDK, National Institutes of Health
  3. Pharma Co., Ltd.
  4. Ministerio de Educacion y Ciencia (Spain)

向作者/读者索取更多资源

P2Y(2) and P2Y(4) receptors are G protein-coupled receptors, activated by UTP and dinudeoside tetraphosphates, which are difficult to distinguish pharmacologically for lack of potent and selective ligands. We structurally varied phosphate and uracil moieties in analogues of pyrimidine nucleoside 5'-triphosphates and 5'-tetraphosphate esters. P2Y(4) receptor potency in phospholipase C stimulation in transfected 1321N1 human astrocytoma cells was enhanced in N-4-alkyloxycytidine derivatives. OH groups on a terminal delta-glucose phosphoester of uridine 5'-tetraphosphate were inverted or substituted with H or F to probe H-bonding effects. N-4-(Phenylpropoxy)-CTP 16 (MRS4062), Up(4)-[1]3'-deoxy-3'-fluoroglucose 34 (MRS2927), and N-4-(phenylethoxy)-CTP 15 exhibit >= 10-fold selectivity for human P2Y(4) over P2Y(2) and P2Y(6) receptors (EC50 values 23, 62, and 73 nM, respectively). delta-3-Chlorophenyl phosphoester 21 of Up(4) activated P2Y(2) but not P2Y(4) receptor. Selected nucleotides tested for chemical and enzymatic stability were much more stable than UTP. Agonist docking at CXCR4-based P2Y(2) and P2Y(4) receptor models indicated greater steric tolerance of N-4-phenylpropoxy group at P2Y(4). Thus, distal structural changes modulate potency, selectivity, and stability of extended uridine tetraphosphate derivatives, and we report the first P2Y(4) receptor-selective agonists.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据