4.7 Article

Sequence-Derived Three-Dimensional Pharmacophore Models for G-Protein-Coupled Receptors and Their Application in Virtual Screening

期刊

JOURNAL OF MEDICINAL CHEMISTRY
卷 52, 期 9, 页码 2923-2932

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jm9001346

关键词

-

资金

  1. Markus Muhlbacher

向作者/读者索取更多资源

G-protein-coupled receptors (GPCRs) comprise a large protein family of significant past and current interest of pharmaceutical research. X-ray crystallography and molecular modeling combined with site-directed mutagenesis studies suggest that most family A GPCRs share a small-molecule binding site located in the outer part of the seven-transmembrane (7TM) bundle. Here we describe an automated method to derive sequence-derived three-dimensional (3D) pharmacophore models capturing the key elements for addressing this binding site by a small-molecule ligand. We have generated structure-based pharmacophore models from 10 homology models and 3 X-ray structures of receptor-ligand complexes. These 13 pharmacophores have been dissected into 35 different single-feature pharmacophore elements, each associated with a sequence motif or chemoprint, describing its molecular interaction partner(s) in the receptor. Subsequently, the protein sequences of 270 GPCRs have been searched for the presence of chemoprints and the appropriate single-feature pharmacophores have been assembled into three- to seven-feature 3D-pharmacophore models for each human family A GPCR. These models can be applied for virtual screening and for the design of subfamily directed libraries. A case study demonstrates the successful application of this approach for the identification of potent agonists for the complement component 3a receptor 1 (C3AR1) by virtual screening.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据