4.5 Article

XRCC2 mutation causes meiotic arrest, azoospermia and infertility

期刊

JOURNAL OF MEDICAL GENETICS
卷 55, 期 9, 页码 628-636

出版社

BMJ PUBLISHING GROUP
DOI: 10.1136/jmedgenet-2017-105145

关键词

-

资金

  1. National Natural Science Foundation of China [81771599]
  2. Key Nature Science Foundation of Hunan Children's Hospital [2015-0002]
  3. Key Laboratory fund of Hunan Province [2018TP1028]

向作者/读者索取更多资源

Background Meiotic homologous recombination (HR) plays an essential role in gametogenesis. In most eukaryotes, meiotic HR is mediated by two recombinase systems: ubiquitous RAD51 and meiosis-specific DMC1. In the RAD51-mediated HR system, RAD51 and five RAD51 paralogues are essential for normal RAD51 function, but the role of RAD51 in human meiosis is unclear. The knockout of Rad51 or any Rad51 paralogue in mice exhibits embryonic lethality. We investigated a family with meiotic arrest, azoospermia and infertility but without other abnormalities. Methods Homozygosity mapping and whole-exome sequencing were performed in a consanguineous family. An animal model carrying a related mutation was created by using a CRISPR/Cas9 system. Results We identified a 1 bp homozygous substitution (c.41T>C/p.Leu14Pro) on a RAD51 paralogue, namely, XRCC2, in the consanguineous family. We did not detect any XRCC2 recessive mutation in a cohort of 127 males with non-obstructive-azoospermia. Knockin mice with Xrcc2-c. T41C/p.Leu14Pro mutation were generated successfully by the CRISPR/Cas9 method. The homozygotes survived and exhibited meiotic arrest, azoospermia, premature ovarian failure and infertility. Conclusion A XRCC2 recessive mutation causing meiotic arrest and infertility in humans was duplicated with knockin mice. Our results revealed a new Mendelian hereditary entity and provided an experimental model of RAD51-HR gene defect in mammalian meiosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据