4.5 Article

Phenotype-genotype correlation in a familial IGF1R microdeletion case

期刊

JOURNAL OF MEDICAL GENETICS
卷 47, 期 7, 页码 492-498

出版社

BMJ PUBLISHING GROUP
DOI: 10.1136/jmg.2009.070730

关键词

-

资金

  1. Sophia Foundation for Scientific Research, Rotterdam, The Netherlands (SSWO) [551]

向作者/读者索取更多资源

Background IGF1R (insulin-like growth factor 1 receptor) haploinsufficiency is a rare event causing difficulties in defining clear genotype-phenotype correlations, although short stature is its well established hallmark. Several pure 15q26 monosomies (n = 22) have been described in the literature, including those with breakpoints proximal to the IGF1R gene. Clinical heterogeneity is characteristic for these mainly de novo telomeric deletions and is illustrated by the involvement of several different organ systems such as the heart, diaphragm, lungs, kidneys and limbs, besides growth failure in the patient's phenotype. The clinical variability in these patients could be explained by the haploinsufficiency of multiple genes besides the IGF1R gene. In comparison, the six different IGF1R mutations revealed to date exhibit some variance in their clinical features as well, probably because different parts of the downstream IGF1R signalling cascade were affected. Methods and results Using the recently developed technique multiplex ligation dependent probe amplification (MLPA), a chromosome 15q26.3 microdeletion harbouring part of the IGF1R gene was identified in a Dutch family. This deletion segregated with short height in seven out of 14 relatives across three generations. Metaphase fluorescence in situ hybridisation (FISH) and Affymetrix 250k single nucleotide polymorphism (SNP) microarray were used to characterise the deletion into more detail and showed that exons 11-21 of the IGF1R and a small hypothetical protein (LOC 145814) were deleted. Conclusion Clinical work-up of this newly identified family, which constitutes the smallest (0.095 Mb) pure 15q26.3 interstitial deletion to date, confirms that disruption of the IGF1R gene does not induce major organ malformation or severe mental retardation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据